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contradict the second corner solution above with eo > evac

(3 has the same sign as )). There is no strict contradiction

since the standard elliptic existence theorem referred to
does not apply to an unbounded sector. To consider just the
relation of the sign of ¥ to the sign of )\, we employ the

Green's function of the sector (always negative),
= A f leln dx dy

This implies that the sign of V is opposite to that of A

except that a simple estimate shows that the integral ceases
> > . :

to converge for r © when 80 evac’ thus there is no

contradiction in the unbounded sector.

We see that the large angle solution, eo > 0 is not

vac’
valid for the neighborhood of a corner inside an island
(cf. Fig. 1). However, there is no reason to discard it in
a nonsimple region (e.g. outside the figure-eight in
Fig. 1). The reader can verify that the sign of y can
change in an annulus.
A similar argument gives a somewhat different conclusion

for bounded current, say AV = 1. It is easy to construct

separatrix solutions of Ay = 1 as in Fig. 1. Suppose y = 0

at the separatrix. The same arguments as above shows that
Y < 0 inside the figure-eight and clearly ¥ > 0 outside.

Near the separatrix, the representation

v % ax2 + %(1 - a)y2 (& € Uor a > l)
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shows that ¥ > 0 on the obtuse side. We conclude that the
inner angle of the figure-eight is always acute (for finite
current) .

The similar statement for the singular current, (37),
is that an interior corner of an island is smaller than S
(for the given m or n), but the exterior angle can be either
larger or smaller. To make this statement meaningful, we
must match the corner solution, 0 < 8 < 50, to one in the
supplementary corner, ao < & < 7 (using symmetry to obtain
a full neighborhood of the origin, Fig. 7).

We demand that the vector Vy be continuous, i.e. that
Y (automatic) and 9y/9n be continuous across a ray on which
Yy = 0. Suppose the solution in 0 < 8 < 8, is fixed. Since

g = rm—lvo we must take the same exponent m

3Y/on = r
(and n) in the two sectors; g' = v, must have the same'magnitude ]
but change sign (¥ changes sign) and ) in the second region

Llust be adjusted to obtain a sector angle 50 = 7T = ao. 1o .

verify this, we first remark that carrying out the previous

calculation with g < 0 is equivalent to changing the sign of
A, i.e. it gives the same formulas (44) and (45), but with 9,

replaced by §l and

3 = - 23/ (1+n) j
(48) J
- - - - - - 1= |
B = a/mzlglil e 2A/(1+n)m21gl| A *
]
Equation (45) determines a unique value 3 to produce 50 = n-eo.

Equation (ZZ) can be rewritten
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2 2=2

= o = pben 2-2
vy = mg] = alg,| g

1 ~B (49)

which determines §l, since vi is unchanged. Thus we have
extended the corner solution to include an entire neighbor-
hood of the origin, Fig. 7, with § = 0 at two intersecting
straight lines and Vy continuous.

We have already established that an interior corner
has eo < evac. Since 1 < m < 2, evac is obtuse. But,
depending on whether 60 is smaller or larger than the supple- -
ment of evac # 50 =T - eo can be either larger or smaller
than evac' Also, eo can be acute or obtuse. If § > B ac ?
the current (AY) reverses across the separatrix; if € < 8 P
the current has the same sign on both sides. If 8 = nm -
then the current in the exterior corner is zero (or it can
be finite and nonzero by fitting to Ay = 1 instead of Ay = 0;
this requires adding a higher order correction since ¢ ~ r2
is small compared to ¥ " s IR

To summarize, from the corner analysis, two parameters,
eo and n can be given arbitrarily [subject to -1 < n < Q0 and

60 < (1-n)m/2], and an appropriate solution can be found in
an entire neighborhood of the origin. The current reverses
or not depending on whether ao < (1l+n)7T/2 or not.

Next we turn to a boundary layer analysis of the entire
separatrix and of a smootﬁ closed curve (Fig. 6), each with
the singularity given in (37). We have already seen that a

global analysis restricts the class of valid corner solutions.

Near the separatrix (or smooth boundary curve), away from the

h.—-_—m__——; _"i““
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wYY

which integrates to

where
u2 = ug + awl

The volume (oriented inward so

vV = § y ds =

Therefore,
&
T

In this integral, u_(s) (3y/3dy
to be given.

For a smooth curve

) -

Qa'ﬂa
L=
——
i
~—

O Y—€

+

corner, the solution is approximately one-dimensional.
Consider first the smooth curve. Taking y as the (inward

pointing) normal coordinate, and assuming that y > 0, we have

Ay (50)
av

- (51)

BU . a= 207 () . (52)

that ¢' > 0) is

dy } b (53)

0 ——€

s (54)

at the boundary) is assumed

ds

S IR % 3 (55)

(this formula cannot be used near a corner where u becomes

zero) . The most important conclusion that we draw is that y"

has the same singularity (viz. wn) as Ay, and even has the

same sign, w"/kwn = (w')3 § ds/u3. This is not surprising
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since intuitively Ay A NN,

‘\" )

ey
This boundary layer analysis applies to the solution of

(37) which we know exists and is unique. However, if this

solution is to represent an adiabatic equilibrium we would

d want 1 = du/dy to be finite. The averaged pressure balance

(Ke) = = i)Y = yu e YT g = " (56)
implies that %" has a sign gppositg_tn \y" (since the
singular term in ¢" is assumed to dominate the finite term
in 1). Thus, although there is a perfectly legitimate
standard (elliptic) solution with the indicated current
singularity, it must have unbounded i, and there is no
adiabatic singular solution .‘.!L.'_}L‘:_ case xlt' a ‘.‘l"“'f‘fﬂ,’.ﬁ."_““.?.’.‘.‘_3:‘.},12'
(nor should we expect one).

For a separatrix with a corner, the contribution to ¢"
from the neighborhood ot the corner must be the same order
as the distant contribution, and must be the reverse in sign.
The boundary layer analysis for a global adiabatic separatrix

will be presented elsewhere. For reasons that will presently

become clear, we are interested in corner solutions whether

or not they are compatible with a global adiabatic solution.
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V. LINE BREAKING FLOWS

We start with the explicit equilibrium solution of a
corner equilibrium as given in the last section. Ignoring
the fact that this type of solution was suggested by adiabatic
considerations, we construct from it a solution of the full
equations of motion (15). To be more precise, we construct
a sclution of the full equations of motion linearized about
the specified static equilibrium. It is well known that there
are enormous subtleties in relating a linearized solution to
the solution of the original nonlinear system. However,
exactly this linearization is very widely used:; for example,
more than 95% of the literature of MHD stability is based on
these equations. To be still more precise, we do somewhat
better than the usual linearization. Assuming that the flow
velocity, u, is small, we drop pu+*Vu from the momentum
equation (this yields the adiabatic system (16) with Ju/st
reinserted). But no other approximation is made; e.g. we
do not replace p by Py * p' where o is the original equilibrium
quantity and p' its perturbation. This allows us to distinguish

between the Eulerian 3/9t and Lagrangian 3/3t + u+V which

are normally identified in a linearization. For example, the
explicit solution will have p(x) unchanging in time, J3dp/dt = 0,
but the entropy and density are carried with the £fluid, e.q.
an/3t + u*Vn = 0. This makes the solution believable for
longer periods of time than a conventional linearization.

To start take oy/ot = 1. This is not a trivial relabeling

u of magnetic lines because it will be coupled with a mass flow

A ———————————————————mm———", ]




across the separatrix, the mass flow following the magnetic

flux flow implied by Jdy/3t # 0. In particular, a specific
magnetic line carrying with it mass at a certain density

will split in two as it crosses the separatrix; another pair
of symmetric lines will touch as it reaches the separatrix,
then leave in two different quadrants with the halves of the
individual lines reconnected differently. To be a solution
of the equations of motion it is clear that the configuration
must be symmetric; more precisely, lines which merge must
carry the same thermodynamic state; a line which splits
leaves two lines carrying the same state. We shall return to
the question of generalized adiabatic solutions which do not
have this restriction.

Specifically, take
ey N (57)

where wo is the corner equilibrium solution. The magnetic

field
B=nx Vy (58)

is unchanged in time as are J = curl B and p. The velocity

component normal to B is
u'Vy = = Jy/ot = = 1 (59)
The vector normal component is

u, = - v/ |9y )? (60)
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This component is singular only at the X-point and it is
easily seen to be square integrable for -1 < n < 0.
Next we evaluate div u from the combined entropy/mass

equation for p. Since 3p/ot = 0

W
o

u*Vp + vy p div u

or

il

divu=-p/yp To=d/dy (61)

Also we recall that

[}
|
>
=
o
o
|
'O
|
>
E
.

p = - Ay o (62)
(n+l)
Writing
u = u-L + uy y u“ = ogB (63)
we obtain
div u, = B-Vo = div(vy/|v|%) - A[v|"/yp (64)

which determines ¢ within an added constant on each flux
contour.

The velocity component uy is singular not only at the
X-point, r = 0, but along the entire boundary of the sector,
Y = 0. Near the corner, uy is square integrable for m < 2,
in other words, always. Near the edges, uj is square intecgrable
% s B> - % , which restrictions we adopt.
The momentum equation is satisfied since u is steady and

for m >

du/3%t = 0. The only equations left to examine are mass and

entropy (the combination of the two, which involves J3p/3t,

L~
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has already been used):
s .7 ’ £ i 1y,
sg = - u'Vo - pdivau=3 - pp/yp = pllog(p/p™ "] (65)
an

s—‘E.:—uOVnzﬁ

The initial density or entropy profile, p(y) or nly) is

arbitrary [the equilibrium equation relates only to p(y)].

If 5 = const. initially, then this persists, 3an/dt = 5p/d3t = 0.

More generally, the convection of p and p gives rise to the
indicated time variation of p and n. The reason for the
nontrivial convection is that p is invariant in Eulerian
and n in Lagrangian (moving) coordinates.

A constant field component, Bz, can be superposed on
the solution just given provided that an appropriate flow
velocity u, is also supplied. The condition curl E = 0
determines u, within a constant on each y=-contour. Although
u, is singular, it is square integrable if n > - % as before.

Consider next the more complex problem of a time-varying
adiabatic Doublet (Fig. 1). Assuming that the numerical
evidence implies the mathematical existence of these solutions,
we can reintroduce u‘L and then div u and uy, in the adiabatic
formulation (16). In the case of two symmetric islands,
mixing (shrinking islands) makes contact between two identical
states and there is no obvious entropy increase - this is what
is confirmed by use of the appropriate jump conditions. The
velocities that go with this equilibrium have the same form

as found in the exact solution of the corner, indicating that

|-

~%
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the adiabatic solution is a true solution of the full
(linearized) equations of motion - with line-reconnection.

With asymmetric islands, the jump conditions give an
entropy increase (pl and s mix to form po). The jump in
entropy is exactly the entropy of mixing and no more.
Consistent with this nontrivial mixing, the adiabatic velocity
component u” turns out to have a §-function at the separatrix.
This is truly an adiabatic limiting solution only, not an
exact solution of the equations of motion.

In the case of asymmetric splitting (growing islands in

Fig. 1), the jump conditions show that Py = in the newly

R
created regions, so that this case can be expected to be an
actual solution of the equations of motion.

A maximum or minimum of y (e.g. the center of an island)
is also a critical point, Vy = 0. There is no adiabatic
evidence (theoretical or numerical) that the current is not
smooth, but we may investigate the consequences of postulating
v v rm, l <m < 2, at an extremum of ¢. Allowing 3y/ot # 0
at this critical point yields a velocity field with finite
kinetic energy. It must, nevertheless, be rejected on physical
grounds, because 5y/3t #¥ 0 implies the presence of a mass
source or sink; this is not allowable. We conclude that only
at a hyperbolic critical point is this type of singularity
relevant.

We offer now a conjecture as to the possible behavior at

an X-point of the full nonlinear time-dependent ideal

equations (15). At a two-dimensional X-point the velocity of

-
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an Alfvén wave is zero; (the projected signal speed in the
plane remains zero with a nonzero third component, Bz). In
the "normal" case with bounded current and § ~ r2, the time
required for a signal to reach the critical point is infinite.
There will therefore be a buildup of irregularities (large
derivatives) near this point. A very similar argument is
used to show the instability of a compressive transonic
nozzle flow in fluid dynamics (with subsequent development
of a shock); a similar argument can also be given as the
qualitative reason for dissipationless Alfvén wave heating
at a resonance, k*B = 0 (the propagation speed normal to
the resonant surface approaches zero). We conjecture that
"in general”, a singularity of the type y ~ rm, l <m«< 2,
will develop after a finite period of time. This seems to
be a difficult analytical question to resolve. A good two-
dimensional numerical code could probably detect such a
phenomenon. For a certain period of time the value of y at
a separatrix (in the presence of waves) would be observed to
remain approximately constant, but after a precise time, y
should be seen to vary in a manner insensitive to choice of
mesh size, etc. There will be an automatic problem with
numerical accuracy near the X-point since the solution will
become irregular whether or not the conjectured singularity
arises. However, it should not be difficult to find that

the global behavior (e.g. changing y at the X-point or a

buildup of current) is reproducible.
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The significance of the square-integrability condition
for velocity is not simple. It is relatively clear that
one should discard solutions or, at least, examine them very
carefully if the kinetic energy is infinite. On the other
hand, opening the doors to arbitrary square~-integrable |
perturbations leads to a Pandora's box of disturbing possi-
bilities. Consider, for example, the linearized equations

of motion and a flux function

Vo= g+ oty (67)

where Yo is smooth, Vwo # 0, and wl has a cusp at which le

is unbounded. Since u-Vwo == ¥y oy 1s not only square
integrable, it is bounded (uII is square-integrable if vVl is).
But for arbitrarily small t, the perturbation Y1 changes

the topology of the flux surface.

This 1s not particularly disturbing with regard to
solutions of the equations of motion, but it is quite disturb-
ing for variational (§W) stability where one is presumably
working in a Hilbert space in which the displacement ¢
(a-vwo e - wl) can easily alter the topology. Presumably,
such nontopology-preserving displacements will usually increase
the potential energy, in which case they are innocuous. First
of all, no such theorem has been proved (or mentioned) .
Secondly, it is easy to construct counterexamples of ideal
(nonresistive) tearing.l Thirdly, stability of a "standard"

separatrix is entirely different from that of an adiabatic

separatrix.l These cuestions will be broached elsewhere.

;1-u-u-.ﬂhinhﬁh.-.-h--un-—-ﬁ
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The explicit corner, line reconnection solution presented
here and its relation to earlier adiabatic examples were
presented and fully discussed at a Gordon Conference in
Wolfeboro, New Hampshire, June, 1977, also at the Sherwood
Theoretical Meeting in San Diego, May, 1977, at the Plasma

Physics Division meeting of the APS in Atlanta, November,

1977, and at a number of intervening seminars and colloguia

at various universities.




VI. CONCLUSION

We have shown by plausible arguments that a previously
described class of adiabatic time-dependent solutions (type
one) with complex topology has a subset (no mixing of regions
with different density) in which reinsertion of the (small)
velocity field probably gives a legitimate solution (type two)
of the equations of motion in the limit of slow motion. We

have also exhibited an explicit exact solution (type two) of

the linearized ideal equations in a special separatrix
configuration with flow across the separatrix. The role
played by dissipation in magnetic line reconnection is, to

a large extent, unknown.
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Figure Captions

Complex Topology

Resistive evolution from Belt Pinch to
Doublet as external coil pinches the
"waist". Current layer develops and

moves with separatrix.

Moving Object Breaking Magnetic Lines.

Tubular Domain.

Toroidal Domain, Magnetic Line Map.

Interior Domain, With and Without Corner.

Corner Solution.
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(a) Initial State

(b) Before Islation
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{(c) Fully Developed Islands

Figure 2
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